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CHAPTER I

Introduction

In this chapter, I present experimental motivation and method for studying semi-
conductor dynamics upon ultrafast laser excitation. I go over the theoretical basis
of the physics and introduce numerical simulations and experiments that were con-
ducted prior to my research. Ultimately, I explain how novel techniques of time-
resolved X-ray diffraction can be used to study responses of an optically excited

condensed matter system.

1.1 Underlying Physics of Semiconductors// Upon Ultrafast
Laser Excitation

In optically opaque materials such as semiconductors, a significant amount of
optical radiation can be absorbed near the crystal surface. An incident photon with
energy greater than the energy bandgap of the semiconductor creats electron and
hole pairs. The free carriers are normally generated near the surface within the op-
tical absorption depth, which typically ranges from 0.1~1 pum. Excess energy from
the free carriers is released through various recombination processes. In a radiative

recombination process, such as band to band recombination or recombination in-



volving excitons, the released energy results in emission of photons. On the other
hand, in non-radiative recombination processes, such as R-G center recombination
and auger recombination, the released energy generates thermal energy and produce
lattice vibrations. With laser oscillators and amplifiers, considerably high carrier
density ( 10'7 ~ 10?! /em?) can be produced. Under heavy excitation ( 10'®/cm? or
greater ), the spontaneous excitation and recombination of electron and hole pairs
are dominated by the non-radiative recombinations [13, 14, 15]. In a typical I1I-V
semiconductors such as GaAs or InSb, the relevant electron to phonon interactions
are polar optical and acoustical deformation potential scattering [13, 14, 15, 16, 17|.

The dynamics of the carrier excitation and relaxation processes have been sub-
jected to numerous experimental and theoretical investigations during past decades
[18, 19, 20, 21, 22, 23, 24]. Impulsively generated acoustic pulses and thermalization
process have been the primary subjects of study in the time-resolved condensed mat-
ter community. The thermalization of photoexcited carriers upon laser excitation has
been looked into in earlier photoluminescence experiments [25]. Electron and hole
velocity distributions and heating distributions have been studied by a scattering
experiments [26]. Recently impulsive excitation and phase sensitive detection of co-
herent phonons has been explored through optical pump-probe techniques with fem-
tosecond time-resolution where a coherent phonon mode and free carriers are excited
simultaneously. Relevant information regarding the carrier to phonon interaction
has been further investigated [27, 28, 29, 30]. However, quantitative measurements

of the impulsive strain and detailed knowledge of the thermalization processes are
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Figure 1.1: Typical set up for the time-resolved all optical detection of coherent
phonons oscillations. We send an additional laser pulse following a pump-pulse with
variable time-delays. By measuring amount of reflected light at each time delay, we
can probe the dynamics over the entire cycle of the system. The time-resolution in
this scheme is typically in orders of tens to hundreds of femtoseconds

still lacking. Typically, our understading is based the assumption that the energy
relaxation takes place on much shorter time scale compared to the ascoutic tansit
time in the crystal medium. Under this assumption, the energy transfer from the
energized electrons to the lattice occurs instanteanously. Thus the current numerical
models that predict semiconductor response upon ultrafast laser excitation ignores
the intricate energy relaxation dynamics that are mentioned in previous paragraphs.
In this thesis, I formulate much more detailed and accurate understading of impul-
sive strain generation and propagation. The motivation comes from fundamental
research as well as development of new semiconductor devices and semiconductor
processing techniques such as in-situ/non-invasive sample measurement and laser

annealing [31, 32, 33, 34].



1.2 Relevant Experiments

1.2.1 Optical Pump Probe Methods

We use time-resolved techniques to observe transient dynamics occuring in solids
in fast time scales. In an optical pump-probe experiment, time-resolved detection
of transient phenomena on variable time scales (ranging from microseconds down
to possibly sub-femtoseconds) is possible. In a typical pump-probe experiments, one
creates an event by applying a laser pulse to a sample and thus pumping it. When the
sample is excited, its lattice dynamics is initally disturbed from its equilibrium state.
After certain period of time, the system eventually comes back to the equilibrium.
This experimental scheme is applicable for studying repeatable excitation processes
such as the photoexcitation of carriers in semiconductors. By systematically sending
an additional laser probe pulse with fixed time delays from the pump pulse and
then by measuring amount of the reflected probed light at each time delay, one can
observe temporal evolution of lattice movement over the entire cycle of the system
(See Figure 1.1).

In these experiments, the time-resolution is defined by the minimal distinguish-
able separation between pump and probe pulses, which is typically about 100 fs
with modern laser systems. The time-resolution allows detection of non-equilibrium
phonon dynamics upon ultrafast laser excitation in 100 fs time scales [1]. It can
also be used to study propagation of ultrafast acoustics pulses [35, 36]. Nevertheless
the measurement of atomic displacements or directly determining the amplitude of

the strain is not possible because the wavelength of laser radiations is much longer
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Figure 1.2: Isotropic reflectivity changes measured with optical pump-probe meth-
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sample [1|. Despite sub-picosecond time-resolution, one cannot directly deduce how
much the lattice moved.



than atomic spacings in a typical crystal. For instance, Figure 1.2 shows obser-
vation of oscillatory behaviors of the lattice in GaAs upon short laser excitatio in
picoseconds time scales. However, we cannot quantitatively measure how much the
lattice moved. Furthermore, the optical probe is only sensitive to dynamics occurring
within the optical penetration depth. More versatile and effective probe is necessary

to study overall bulk dynamics or multilayer samples.

1.2.2 Time-Resolved X-Ray Scattering Experiments

Since the discovery of X-rays by Rontgen in 1895, X-rays have been used to study
structural properties of condense matter systems on atomic length scales. Probing
with X-rays yield direct information about atomic positions of the materials. X-rays
also penetrate considerably deeper than optical probes thus allowing study of bulk
materials. Furthermore, the wavevector of the X-rays are large enough to probe the
entire Brolluine zone in reciprocal space.

By the early 1980s, scientists have begun to incorporate X-rays in time-resolved
experiments [37, 38|. In earlier experiments, due to relatively poor time-resolution
and count rate, it was difficult to study detailed lattice dynamics in fast time scales.
The time-resolution was mostly limited by speed of the electronics while the data
acquisition rate was severely constraint by the number of photons from X-ray tube
sources. With the arrival of powerful femtosecond laser technologies, laser driven
plasma sources were built to produce hard X-ray photons. The first hard x-ray
source (1.6 KeV) with picosecond time-resolution has been demonstrated by Rischel

et al. [39]. The plasma source provides sufficiently short X-ray pulses to probe fast
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Figure 1.3: Transient changes in X-ray diffraction efficiency upon ultrafast laser
excitation at two different reflections (111) and (222) in Mismuth crystal is measured
with plasma based source [2]

lattice dynamics without relying on the time-resolution of detectors and electronics.
Since then, development of more advanced plasma sources achieved subpicosecond
time-resolution. The improved ultrafast source of X-rays were used to study fast
phase transition [40, 41] and coherent atomic displacement of the lattice in solids [2]
where Sokolowski-Tinten et al [2] have successfully demonstrated a periodic modu-
lation of the X-ray diffraction efficiency caused from excitation of coherent optical
phonons (See Figure 1.3). Nevertheless, the plasma source based experiment still suf-
fers from low count rate and thus requires X-ray focusing optics, which degrades the
monochromaticity of X-ray beam such that obtaining real atomic spacing informa-
tion becomes unfeasible. And also, even with the incorporation of the focusing optics,
the acquisition time often exceedes single days for a single sample or set of excita-
tion conditions. For these reasons time-resolved X-ray experiments at synchrotron
facilities had received much attention.

Third generation synchrotron radiation facilities such as Advanced Photon Source



(APS) continuously produces many orders more X-rays than the tube sources. The
synchrotron X-rays are monochromatic and have negligible spatial divergence. Fur-
thermore, X-ray beams at APS is intrinsically pulsed, which is ideal for doing time-
resolved experiments. By late 1990s, in a very few national facilities such as Ad-
vanced Light Source (ALS) and APS, femtosecond laser pumped and synchrotron
X-ray probed set ups were implemeneted. In one of the experiments performed at
the ALS, Lindenberg et al. [3| studied InSb system with sub 10 ps time-resolution
using a streak camera. In their work, oscillation periods of the optically excited
acoustic phonon modes were measured (See Figure 1.4). From this data ,they were
able to extract wavevector information and later constructed a dispersion relation for
the laser induced phonon populations. In this experiment, the thermoelastic model
failed to match the experimentally obtained values until electron to phonon coupling
time was included. In another synchrotron based experiment at APS, Reis et al [4]
reported on the modulation of X-ray diffraction from (111) InSb due to impulsively
generated acoustic phonons and were able to quantitatively characterize localized
strains at different times. They were able to make a direct comparison between the
experimental data and the simulation (See Figure 1.5). They found out that the
energy partition from the pump pulse to the lattice cannot be accounted for based
on the thermoelastic model. Inclusions of various delicate processes such as carrier
diffusion, recombination and thermal diffusion were necessary to correctly predict
the time-resolved behavior of the InSb crystal upon ultrafast laser excitation. In

above examples, TRXD shows when and where the thermoelastic models can be
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Figure 1.4: Time-resolved X-ray diffraction efficiency measured at different angles

about InSb Bragg peak. Despite 100 ps time-resolution at ALS, sub 10 ps dynamics
were measured using X-ray streak camera [3].

used. The resulsts signify that the thermoelastic model and mere verification from
optical measurements are not sufficient to explain intricate dynamics in the crystal

upon femtosecond laser excitation.

1.3 Thesis Motivation and Organization

In this thesis, I make quantitative measurements on how the energy from optical
excitation relays down to generation of impulsive strain and heat in various materials.
In chapter 2, I present experimental appratus and schematics that are used in my
time-resolved X-ray diffraction measurements. And then, I elaborate on theories and
numerical models to simulate the data in chapter 3. In chapter 4, relative strength of

thermal expansion and volume deformation potential are calculated and compared
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and (d) are collected sets of data and (b) and (e) are result obtained from numerical
modeling to simulate the temporal evolution of strain inside the crystal [4].



11

to the data. Unpredicted behavior of the strain from varying pump fluence is also
presented. In chapter 5, I study strain and phonon interactions beyond the assump-
tion of uniaxial property and continuum dynamics. By fully extending the capability
of the synchrotron X-ray based pump probe method, dynamics of large wave vector
phonons (upto terahertz), are investigated. Finally in chapter 6, limitations of cur-
rent time-resolved methods will be addressed and possible solutions are introduced.
In conclusion, I make discussions about how upcoming X-ray technologies should
further aid us to explore condensed matter physics in unprecedented precision and

time-resolution.



CHAPTER II

Experimental Setup

Time-resolved X-ray diffraction (TRXD) measures two different facets of lattice
dynamics: time and space. The measurement requires specialized tools and knowl-
edge from two different experimental fields, optical pump-probe and X-ray scattering.
TRXD experiment requires pulsed laser and pulsed X-ray sources that are synchro-
nized to each other, which can be done at very few places around the world. It is
also necessary to spatially and temporally overlap the laser and X-ray pulses on the
sample and to control the time delay between them. The timing aspect of the TRXD
closely resembles that of the optical pump-probe experiment while the techniques of
spatial analysis of the sample follow procedures that are laid out for X-ray diffrac-
tion. In following chapters, the relevant apparatus for TRXD experiments at the
X-ray synchrotron are described. In particular, I explain synchronization between

X-rays and femtosecond optical pulses in detail.

2.1 Laser Pumped and X-ray Probed Experiment

In a TRXD experiment, X-rays are delivered to the sample, and then the laser

pulse is directed onto the X-ray spot. Given that the temporal delay between the

12
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pulses is sufficiently longer than the system’s recovery period, the initial X-ray diffrac-
tion pattern represents the lattice dynamics at a thermal equilibrium. For example,
one would expect to see a rocking curve about the Bragg angle. However, once
the time delay is adjusted such that the X-ray and the laser pulses are temporally
overlapped, X-rays now interact with the lattice that has been excited by the optical
radiation. Therefore, important crystal parameters such as the lattice spacing change
drastically and the position of the Bragg peak changes accordingly. As we system-
atically scan the X-ray pulse arrival time with respect to the laser pulse, the lattice
system eventually has enough time to return to its equilibrium state. By recording
the angular position of the Bragg peaks at each time delay, the time resolved data

set from a photoexcited material is obtained.

Figure 2.1: The Advanced Photon Source(APS) at the Argonne National Laboratory
provides this most brilliant X-rays for research in various scientific disciplines such
as biology, chemistry, physics and ect.

Most of the experiments presented in this thesis were performed at the Advanced

Photon Source (APS) (See Figure 2.1 ). APS is a source of the most brilliant X-
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Figure 2.2: Experimental floor layout at MHATT /XOR sector 7 insertion beamline.

ray beams to study various interdisciplinary subjects, such as biology, atomic and
molecular physics and condensed matter systems. APS is comprised of 37 beam
lines (currently growing) with several experimental endstations, or hutches on each
beamline. Among the beamlines, MHATT-CAT/XOR at sector 7 has a unique set
up where the simultaneous delivery of ultrafast amplified laser beam and X-rays is

possible.

2.2 Overview of the Experimental Site

The experimental floor plan of sector 7 is shown in Figure 2.2. The monochro-
matic X-rays beams are produced at A Hutch. Three experimental hutches are
subsequently connected through X-ray beam delivery pipe, which is maintained un-
der vacuum to limit the loss of X-ray flux due to absorption in air. B and C hutches
are separate experimental stations typically reserved for non time-resolved experi-
ments, such as surface scattering, X-ray imaging, or characterization of X-ray optics.

Approximately 40 meters down from the X-ray source, D-Hutch is configured for
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time-resolved X-ray diffraction experiments. Inside the D-hutch, there is an ampli-
fied laser system that is precisely synchronized (within a few picoseconds) to the
repetition rate of the X-ray pulses from the APS storage ring. The laser system
begins with a seed laser, Ti:Sapphire oscillator, which generates femtosecond optical
pulses at a central wavelength of 800 nm (1.55 eV). The output from the oscillator
is amplified through a commercial Ti:Sapphire amplifier to deliver a few mili-Joule
laser pulses that are compressed down to 100 fs FWHM or less.

The APS accelerator generates electron bunches that travel at a relativistic speed.
Currently the FWHM of an electron bunch in time domain varies from as short as 30
to 150 ps. As the electron bunches pass through the undulator, X-ray bunches with
identical temporal profile to that of the electron bunches are generated. As a result,
we have X-ray pulses that are highly monochromatic and carry very small spatial
divergence. Once we manage to spatially overlap the X-ray and the laser pulses on
the sample, TRXD can be performed. Specific of key apparatus and procedure will

be described in detail in later sections.

2.3 Synchrotron X-Ray Source

2.3.1 Background

The term synchrotron origins from a specific type of a particle accelerator. It
has become a universal term for radiation generated from charged particles such as
electrons traveling at relativistic speeds in artificially designed magnetic fields that
keeps them in a circular orbit. Synchrotron radiation is emitted from the electrons

traveling at almost the speed of light when its path is bent by a magnetic field and
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was first observed in 1947 |42, 43|. Since then, many storage rings have been built
around the world dedicated to the production of brilliant X-rays. As can be seen
in 2.3, most advanced third generation light sources are able to produce 10'? times

brighter X-rays than early lab based ones [|44].
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Figure 2.3: The brilliance of X-ray sources as a function of time. The brilliance of
early lab source and each generation of synchrotrons are compared

2.3.2 Electron Accelerator and Storage Ring

The APS electron accelerator and storage system are the critical components for
production of the high energy X-rays. Initially electrons emitted from a thermionic
cathode are accelerated by high voltage alternating electric fields in a linear acceler-
ator. Selective phasing of the electric field accelerates the electrons to 450 MeV. At
this energy, the electrons are relativistic. The electrons are later injected into the
booster synchrotron, a race-track shaped ring of electromagnets (See Figure 2.4), and
then accelerated up to 7 GeV. In order to maintain the orbital path of the electrons,

bending and focusing magnets increase the electric field strength in synchronization
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Figure 2.4: General layout of APS electron accelerator and storage ring structures.
The schematic also displays the locations of the experimental hutches. Electromag-
netic field from the electromagnets around the ring structure focuses the electrons
into a narrow beam that is bent on a circular path within vacuum chambers running
through the centers of the electromagnets.

with the RF field. The 7 GeV electrons eventually are injected into the 1104 meter
circumference storage ring consisting of more than a thousand electromagnets and

associated equipments.

2.3.3 Temporal Properties of Electron Bunch Structures

The synchrotron radiation from APS is pulsed due to temporal properties of the
APS electron bunch structure (See Figure 2.5). The repetition rate of electron bunch
structure is determined by RF frequency given from the linac to compensate for
energy loss due to synchrotron radiation. Trains of electron bunches (approximately

15 ns long) are accelerated in the linac to 325 MeV from the injector gun into the
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Figure 2.5: Fill pattern under standard operating mode at APS. 24 singlets with a
nominal current of ~ 4.25 mA and a spacing of ~ 153 nanoseconds between singlets.

accumulator ring. The bunches are damped in transverse and longitudinal phase
space coordinates and accumulated until an extraction is triggered. The bunch length
at the extraction is about 1 ns. The extracted beam is injected into a booster ring
that ramps the single bunch from 325 MeV to 7 GeV.

At the end of the booster cycle, the bunch is extracted and injected into the stor-
age ring. At this point, the bunch can be injected into any of the 1296 RF buckets
that are spaced by 2.842 ns. The storage ring mater RF frequency of 351.972 MHz
defines the bucket spacing of 2.842 ns. The circumference of 1.104 Km corresponds
to a revolution frequency of 271.5 KHz (PO frequency), which corresponds to a revo-
lution of exactly 1296 buckets in 3.683us. Under standard operating mode, which is
used in most of my experiments, singlet bunch pattern at 102 mA of average current
comes in a train of 23 bunches (16 nC/Bunch), each spaced by 153 ns. At the end

of bunch train, there is a gap of 306 ns [45]. As we describe in section 2.6, the
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electron bunch structure and storage ring RF frequencies are very important as they
are used to achieve timing synchronization between the synchrotron-radiation and

laser pulses.

2.3.4 Synchrotron Radiation

In a storage ring of synchrotrons such as APS, X-ray radiation is usually pro-
duced in bending magnets that are needed to keep the electrons in orbit, or insertion
devices such as wigglers and undulators that are placed in the straight sections of
the storage ring. We always used the latter. In a undulator, as the electron beam
passes between the series of periodic magnets (See Fig. 2.6), it changes directions.
The poles of the magnets alternate, so the electron beam wiggles left and right. Any
wiggling electric charge emits electromagnetic radiation. The type of electromagnetic
radiation produced depends on the frequencies at which the charge wiggles. Lower
frequency wiggles can make radio waves or microwaves, while higher frequency wig-
gles can make X-rays. For our experiment, an undulator is used instead of wiggler.
In both of these devices, an alternating magnetic field forces electrons to oscillate.
However amplitude of the field in a wiggler is considerably larger and thus radiations
from different part of wiggler adds up incoherently. On the other hand, the undula-
tor emits radiation where at a given electron at one oscillation is in phase with the
radiation from other oscillations. Consequently the amplitudes of the radiated waves
are added and then the sum is squared to give out the signal intensity.

The condition to achieve the coherent superposition of x-ray radiations is shown in

Figure 2.7. In the vicinity of M, one can approximate the cosine wave with amplitude
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Figure 2.6: The alternating poles of an undulator create a series of small amplitude
oscillations in a moving direction of electrons that emit synchrotron radiation at each

pole. A certain fundamental wavelength is selected by the path length travel, which
can be controlled by change the undulator gap.

N

A by circle with radius p as follows. That is,

Circular :x+ (p—A)=/p? =22 5o 2 A— ——

Cosine : x = Acos(k,z) = A —

From this, we obtain a condition
p = (Aky)™

And then another condition to be met is the electron path length ¢ for a single

period of the undulator is given as,

¢ = [\ Gz =0, [1+ (k)]

There is a very delicate link between synchrotron radiation and relativity. Naively,
one would assume that the wavelength of radiation from the undulator should be
close to the array period of the magnets, which is about 30 million times off from

X-ray wavelength. The explanation is given in terms of relativity. Imagine the
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Figure 2.7: Properties of small oscillations for coherent generation of synchrotron
radiation.

undulator seen by an electron that travels toward it. The electron is moving at near
speed of light, thus it sees the undulator contracting along its length in its frame
of reference (Lorentz contraction). Therefore, the emitted wavelength is reduced
with respect to the undulator period. But also the emitted wavelength is affected
by the relativistic Doppler Effect. As result, we are able to generate X-rays from
the undulator periods. Consequently, the coherent addition of the radiation is only
feasible at one frequency, fundamental wavelength of monochromatic x-ray beam,
and its harmonics. The wavelength is tunable by changing the strength of magnetic

field, which can be conveniently done by changing undulator gap [46].

2.4 Monochromator

Radiation from the undulator is extremely intense and carries spectral bandwidth
of approximately 3%, which is too broad for a diffraction experiment. In order to
obtain X-rays that are sufficiently monochromatic, additional filtering of the spec-
trum is required. At the output of the undulator, there are sets of white beam
slits that are water cooled to dissipate the heat load. Typically at the sector 7, the

emitted radiation is apertured to 500 pm by 500 pum through X-ray slits. Following
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Figure 2.8: A double crystal monochromator. Polychromatic X-ray beam is incident
on the first sets of lattice planes but only one wavelength satisfies two successive
Bragg conditions.

the white beam slits, a cryogenically cooled double crystal Si (111) monochromator
limits the spectral bandwidth. This device depends on two successive applications
of Bragg reflections (See Figure 2.8). Depending on the lattice spacings of the first
crystal, different wavelength components from the incoming beam are rejected at
different outgoing angles. Among all components in the polychromatic beam, only a
single wavelength that satisfies the Bragg condition is reflected toward parallel direc-
tion to the incoming beam. The monochromator finally outputs approximately 106
monochromatic X-ray photons per pulse at 10 KeV with energy deviation typically

less than 1.4 eV, which corresponds to approximately 0.014%.

2.5 Laser System

The generation picosecond strain pulse requires a laser system that produces
optical pulses with width less than the optical penetration depth speed of sound.
Ti:Sapphire oscillator suffices this requirement. However to generate large enough

strain (1075 ~ 107*) that introduces significant deformation, an optical fluecne
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of a few gfn—‘é is required. Commercial laser amplifier provides the desired fluence

with reliable stability. The laser system schematics inside the experimental hutch is

described in following sections.

2.5.1 Ti:Sapphire Oscillator

Ti:Sapphire laser emits broadband near infrared light. These lasers are mainly
used in scientific research where ultrafast optical pulses are needed. This unit is
typically pumped with another laser with a wavelength of 514 to 532 nm and operates
most efficiently at a wavelength of 800 nm. This laser is modelocked to produce trains
of optical lights with short duration on the tens of femtoseconds. The basis of this
modelocking technique is to induce a fixed phase relationship between the modes of
the laser’s resonant-cavity and thus produce short pulses.

A laser cavity consists of two plane mirrors facing each other (See Figure 2.9),
surrounding the gain medium of the laser (a Fabry-Perot cavity arrangement). Light
traveling between the mirrors of the cavity will constructively interfere with itself,
leading to the formation of standing waves between the mirrors. Each of the modes in
the standing waves will oscillate independently, with no fixed relationship between
each other. It is essentially like a set of independent lasers all emitting light at
slightly different frequencies. The individual phase of the light waves in each mode
is not fixed. In lasers with only a few oscillating modes, interference between the
modes can cause beating effects in the laser output, leading to random fluctuations
in intensity. Normally, in lasers with many thousands of modes, these interference

effects tend to average to a near-constant output intensity. The laser operation is
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Figure 2.9: Design of KML oscillator system used in the experiments

known as a continuous waves (C.W.).

However, if each mode operates with a fixed phase between them, the laser output
behaves quite differently. Instead of random or constant output intensity, the modes
of the laser will periodically all constructively interfere with one another, producing
an intense burst of light. Such a laser is said to be modelocked or phase-locked. These
pulses occur separated in time taken for the light to make exactly one round trip
of the laser cavity. This time corresponds to a frequency exactly equal to the mode
spacing of the laser, dv = % The duration of each pulse of light is determined by the
number of modes which are oscillating in phase. If there are N modes locked with
a frequency separation dv, the overall modelocked bandwidth is Név, and the wider
this bandwidth, the shorter the pulse duration from the laser. For example, for a

laser producing pulses with a Gaussian temporal shape, the minimum possible pulse

0.44

N'Ag » Where the

duration dt in a transform limited pulse duration is given by: At =

value 0.44 is known as the time-bandwidth product of the pulse, and varies depending
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Figure 2.10: Grating-pair stretcher used to provide positive dispersion. Lenses (L1
and L2) are separated by twice their focal length. A reflector is used to fold the
beam path. Difference in distance between the grating and lens and the focal length
determines the total dispersion.

on the pulse shape. The Ti:Sapphire Oscillator used in our experiments follows
Kapteyn-Murnane oscillator design pumped by a C.W. diode pumped solid state
green laser (See Figure 2.9). The laser is capable of producing spectral bandwidth

of 50 nm ( 25 fs FWHM transform limited) with average pulse energy of 4 nJ.

2.5.2 Amplified Laser System

Chirped Pulse Amplification (CPA) scheme amplifies the oscillator output pulse
fluence up to a few Z‘n—‘é Architecture of the CPA laser system begins with a
Ti:Sapphire oscillator described in previous section. The broadband ultrafast seed-
ing pulse is directed to the grating pair pulse stretcher (see Figure 2.10) [47]. The
grating pair is oriented such as longer wavelength components of the seeding pulse
travel a shorter path than the shorter wavelengths, and hence they arrive at the am-
plifier stage sooner. The result is that a temporally stretched version of the seeding
pulse heads on to the amplifier. Its duration is stretched out typically 20,000 times,
and its amplitude reduced by an identical factor. The leading edge of the stretched

seeding pulse is redder than its trailing edge with temporal profile of roughly 100 ps.

The stretching factor is defined by the effective grating separation L = 2(I, — f),
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where f is the focal length of the lens and [g, the distance from the lens to the grating.
When [, is equal to f, there is no dispersion, and when [/, becomes larger than f, the
dispersion changes the sign. In practice, the lenses are replaced by a single spherical
or parabolic mirror in a folded geometry, which eliminates chromatic aberration.
Ignoring the amplifier for now, the pulse is recompressed using an identical parallel

grating pair separated by 2[, that introduces the opposite sign of chirp.

Amplification

Two types of Ti:Sapphire amplifier laser systems were used in my research. Un-
til November 2003, a commercial multipass amplifier was used. The amplifier was
designed to run at a 1 kHz repetition rate [48| (see Figure 2.11). In this scheme,
a Pockels cell is used to inject a single pulse from the oscillator into the amplifier
where it makes 8 passes with a slight offset at each cycle before being picked off and
ejected.

Subsequent data in this thesis was taken with a new commercial system, which
employs regenerative amplification scheme (See Fig 2.12), which replaced the multi-
pass version. The new amplifier typically runs at a repetition rate of 1 KHz but also
capable of running up to 5 KHz [49]. In this geometry the seeding pulse is injected
into the amplifier using a fast-switching Pockels cells. This is performed by stepping
the voltage in two stages, firstly by a quarter wave, in order to trap the pulse in the
amplifier cavity and then up to a half wave for ejection. In our system, the pulse

makes 12 roundtrips in the cavity before the gain is saturated.
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Ti:sapphire

Figure 2.11: Multipass amplifier Design that was used at sector 7 prior to its decom-
mission, which took place during our run in summer of 2003.
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Figure 2.12: Current regenerative amplifer scheme from Positive Light. The unit is
capable of delivering 30 fs pulse at average power output of 2.5 W.
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Recompression

Out of the broadband amplifier, energetic chirped pulse is directed through a
compressor grating pair. This is a pair of special reflective optical gratings oriented
in such a way that longer wavelength components of the high energy chirped pulse
travel a longer path through it than do the shorter wavelengths, and hence emerge
from it retarded. The chirp which was initiated through stretcher stage is now
undone. The spectrally broad energetic pulse emerging from the compressor optics
now has all its spectral components occurring at the same instant [50][51]. Because of
the extreme optical power densities, an amplified pulse from the compressor should
not be directed through bulk optical matter such as windows at small beam diameters

after the recompression stage.

2.6 Laser to X-ray synchronization

In the time-resolved experiments, synchronization between pump and probe is
the most critical component because the time resolution of the experiments heavily
depends on it. In an all optical pump probe experiment, timing synchronization be-
tween the probe (oscillator pulses) and pump (oscillator /amplified pulses) is perfect.
However, for the time resolved experiments at the synchrotron, the pump (Amplified
pulses) and probe (X-ray pulses) are not intrinsically synched to each other. There-
fore, an active means of synchronization is required. Since the pulse duration of the
X-rays at APS is typically 100 ps (FWHM), synchronization with precision less than
a few tens of ps is sufficient to fully utilize time resolution of the probe.

Figure 2.13 shows a schematics of a laser to X-ray synchronization in the ex-
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Figure 2.13: Laser to X-Ray Timinig Synchronization Scheme. 44 MHz signal de-
livered from the storage ring facility is fed into the bunch clock generator (BCG) to
reconstruct 351.9 MHz, which is mixed with 4th sub harmonic of the laser oscillator
frequency. Error signal is used as a feedback to adjust the cavity length of the oscil-
lator to minimize the error signal, thus locking laser system timing to the reference
frequency of 351.9 Mhz.

periments. The reference RF signal for the timing system is provided by a master
oscillator of the RF system for storage ring acceleration (351.9MHz). Since the source
of the storage frequency is physically far away from the experimental site, it is nec-
essary to distribute the RF signal to desired locations. In the APS timing delivery
system, 351.9 Mhz is divided by eight to generated a phase related and frequency
locked 44 Mhz signal. The 44 MHz is distributed via multi-mode fiber with afford-
able fiber optic components. Our experimental station has a phase-locked loop that
multiples the 44 MHz to reconstruct 351.9 Mhz using BCG (See Figure 2.13 and
2.14).

The active synchronization scheme starts with the oscillator, which runs at 88 MHz(

4™ subharmonic of the reference frequency). First an optical pick up from the os-
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cillator pulse is fed into a fast rise time photodiode. The output of the photodiode
is filtered through a 351.9MHz band pass filter where it is later mixed with the ref-
erence RF frequency. The output from the mixer is called error signal because it is
directly correlated to the phase difference between two input frequencies. The error
signal is fed into a feedback loop where high voltage is applied to the piezo-stage on
the high reflector inside the oscillator to minimize the error signal. Thus the cavity
length is always changing to phase lock two signals. Timing jitter between the RF
and the laser is in order of a few picoseconds, which is negligible compared to the
pulse duration of our X-ray probe at this time (~100 ps). Finally the laser amplifier
is synchronized to a given subharmonics of the ring mater RF (See Figure 2.14).
By adding a phase to the reference RF, the relative delay between the laser and
X-rays is controlled. The feedback system minimizes the error signal based on the
modified reference signal (351.9MHz + Phase). This effectively changes the relative
timing between the optical pulse and X-ray pulse. The minimal resolution of the
phase shifter is about 20 ps, which is still acceptable given the pulse duration of
synchrotron radiation. The maximum delay that the phase shifter can provide is
4.75 ns. A SRS535 digital delay generator provides arbitrary delayline for the optical
pulse much longer than the limits of the phase shifter. This delay unit controls when
the amplifier is triggered and oscillator pulse is amplified. A maximum delay of + /-

1 ms can be achieved.

2.7 Detectors
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Figure 2.14: Overview of laser to synchrotron radiation timing at sector 7

2.7.1 Ion Chamber

When ionizing radiation such as X-rays passes through a gaseous medium, colli-
sions with the gas molecules produces ion pairs. In most case, the chamber uses air
as a gas medium. A DC voltage is applied between top and bottom parallel plates
to create an electric field that attracts the ions to the oppositely charged plates (See
Figure 2.15). Typically one of the plates carries high electric potential with respect
to ground so that the circuitry is near ground potential. The other plate is usu-
ally held near zero volts and the resulting current is measured. Output from the
ion chamber goes through current amplifier and voltage to frequency converter into
data acquisition system. Due to large input area and easy usage the ion chamber is

perhaps the most convenient tool to measure average integrated X-ray flux.



32

1e+21

1e+17 1e+17

Conversion Factor (Amps to photans/sec)

1e+16 1e+16
0 10 20 30 40 50 60 70 80 90 100

Photon Energy (eV)

Figure 2.15: Ton chamber outputs current calibrated to number of X-ray photons.
Figure taken from [5]

2.7.2 Avalanche Photo-Diode (APD)

In order to perform a time-resolved experiment with pulsed x-ray source, the
synchrotron source such as APS requires X-ray detectors that are capable of picking
out a single X-ray pulse from the train. Under normal operation mode, the time delay
between individual pulse is about 150 ns, and thus a relatively fast rise time detector
such as silicon Avalanche Photodiode (APD) is required. The rise time of typical
APD is about 5 to 10 ns that is sufficient enough to distinguish between individual
bunches (see Fig 2.16). For our experiments a windowless Advanced Photonix APD
(SD 197-70-73-520) was used. However because APD is sensitive to optical infrared
light, i.e. laser radiation, it is necessary to cover the APD with a thin aluminum foil.

In general this particular APD design can be used in either normal linear pro-

portional mode at low gain, or in a single photon-counter mode. Latter one was
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Figure 2.16: First figure (on left) shows typical rise time of APDs (5~10ns) that were
used in the experiment. In this case APD was running under single photon counting
mode. Figure on right was taken from APD under normal linear mode, and it shows
X-ray pulse trains under standard fill pattern operation mode. The spacing between
each singlet is approximately 150ns

used extensively in most of my experiments to deal with non-negligible systematic
background from APD itself and gated integrators used for data acquisitions. In
order to maintain high photoelectron detection probability only from X-rays, it is
necessary to set detection threshold at proper value. Details of how single photon

counting APD is incorporate into the experimental setup is elaborated in Chapter 4.

Diffractometer

Collecting diffracted x-rays from a crystal requires several degrees of freedom,
which needs to be controlled with high degree of accuracy and repeatability. At the
sector 7 D-Hutch, we have a Huber diffractometer that provides virtual Eulerian
four-circle geometry (See Figure 2.17), which allows three degrees of freedom for the
sample movement and an extra one for the detector. The four degrees of freedom
allow arbitrary choice of reciprocal space coordinates h,k,1 and either incident or

exiting x-ray detection angle.
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Figure 2.17: The HUBER diffractometer used in the experiment has four degrees of
freedom in movement.
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Figure 2.18: Experimental layouts at D-Hutch. Ti:Sapphire laser oscillator is syn-
chronized to master 352 MHz RF reference frequency from the storage ring. An
optical pulse from the laser amplifier that is seeded by the oscillator is delivered to
the sample. With proper alignment spatial overlap between the optical pulse and
the X-ray pulse onto the sample can be achieved. Notice that repetition rate of the
synchrotron radiation is locked to the 352 MHz frequency as well. Therefore we can
achieve timing synchronization between the X-ray pulses and the laser pulses
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2.8 Expected Improvements

Most important aspects of the time-resolved diffraction experiment are the time
resolution of the probe, the synchronization between pump and probe pulses, and the
precision of diffractometer movement, which defines how accurately we can analyze
the material in reciprocal space. Currently, even with recent repair and addition of
encoders, the Huber goniometer is not functioning optimally. Its minimum resolution
of movements is actually limited by the driver resolution. In order to fully utilize
the capability of the device, upgrade of the driver is necessary. I note that the
time-resolution of the synchrotron radiation is not always limited to 100 ps. It varies
depending on the filll patterns and how much charge is contained in each pulse. Under
1296 bunch mode, there are 1296 uniformly spaced bunches with a nominal current
of 0.08 mA and a spacing of 2.85 ns between bunches. With considerably less charge
compared to that of 24 bunch mode (4.25 mA), we expect that pulse duration of the
X-rays can be reduced as short as 20 to 30 ps FWHM. We could, therefore, obtain
much better time resolution than present. Given shorter probe pulse duration, it is
also necessary to come up with a more precise timing system. The 10 ps timing jitter
between the pump and the probe as well as the minimally resolved time step with
phase shifter require significant improvement. Issues involving the timting jitter in
the pump probe system will be continuously addressed as more advanced synchrotron

based X-ray source begin to emerge, which will be described in chapter 6.



CHAPTER III

Theory

I use three theoretical tools for analyzing and simulating laser induced dynamics
in the crystals: a modified thermoelastic model, dynamical matrix for generating
dispersion relation, and dynamical theory of X-ray diffraction. Typical wavelength
of the phonon that constitutes the propagating strain pulse is much longer than the
lattice parameter of a solid. I use the modified version of the thermoelastic model
to simulate the propagation of impulsively generated strain pulses in a bulk material
as well as at the heterostructure interfaces. Subsequently, the changes in the X-ray
diffraction patterns due to the deformed lattice parameters are simulated by using
dynamical theory of X-ray diffraction. Results from the simulation and the exper-
imental data are compared to examine the theory. Nevertheless, for the phonon
populations at the large wave vector limits (terahertz phonons), the wavelength of
the phonons are comparable to the interatomic spacing. In this case, the assumption
of cotinuum dynamics is not applicable. We need to pay attention to details of indi-
vidual atomic placements. By calculating for atomic positions between neighboring

atoms and the interatomic forces, I formulate a dynamical matrix for the system of

36
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our interest. The dynamical matrix correlates the wave vector of the phonons to
their energy, generating a phonon dispersion relation. Elaborate details of the calcu-
lation is presented in Appendix B. Use of the dynamical matrix becomes especially
important as we will be able to probe terahertz phonon in the future. Toward end of
the chapter, I add a brief explanation on how we can extract high frequency phonon

information from the diffusely scattered X-rays.

3.1 Simulation of Strain Generation and Propagation

3.1.1 Stress and Strain Relation in Solids

Impulsive generation of non-equilibrium phonons and carriers in a semiconductor
produces a stressed near-surface region within optical penetration depth. The stress
consequently generates strain causing a condensed matter system such as a single
crystal to deform. We investigate phonons at low enough frequency, the solid behaves
as an elastic continuum and the treatment of an anisotropic elastic medium is valid.
At a given frequency and a direction, it is possible to have three sound waves. They
are different to each other in their direction of polarization and velocities. For sound
waves traveling in a high symmetry direction, for instance [001] in GaAs, one of the
longitudinally polarized along [001| and the other two are transversely polarized in
mutually perpendicular directions.

To illustrate the method of visualizing propagation of sound, we can imagine a
longitudinal wave propagating along a particular direction. In an elastic crystalline
solid, strain caused by a stress exerted on a solid is considered to be proportional

to the stress and the displacements from equilibrium are very small. Consider a
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lattice structure with cubic symmetry, disregarding the degeneracy. In this case,
there are six independent stress components, 04,0y, 0.z, Oy, 05z, and o, where
the subscripts denote directions that the stress is acting on. oy represents strain
acting on one direction where the cross terms such as o;;, where ¢ # j, stands for
shear. For a cubic unit cell crystal such as GaAs or InSb, unit cell can be defined by
orthogonal sets of basis vectors %, @, and 2. And small deformations applied to the

unit cell system can be expressed as follows [52].

’ AN
x =(1 +5m)9:+5zyy+5m§

’ A A A
Y =epaTH+(1+ey)U+e,. 2 (3.1)
’ N A A
2 =€ Tte,yY+(1+e,,)2
Where 7,4 represents the applied deformation. They are dimensionless and have

values much less than 1 if the strain is small. Here the strain can be defined as

__ Ouq
Naa = Eaa = F2

Nag = €af + Efa = % T ba
Where o and 3 are the indices for direction unit vectors and wu, is the displacement
along the direction denoted by the index. For simplicity higher orders of stress
tensor terms are ignored and the relation between the strain components and the
stress components can be formulated through elastic compliance vector.

For more specialized and general stress-strain relation, in an anisotropic linear
elastic materials, we have 7;; = Sijuow + a;; AT where a;; is a thermal expansion
coefficient,S;;; is the elastic compliance tensor of which inverse is related to the
elastic modulus or stiffness tensor, and AT is the temperature change in the material.

Note that S;jy; is the elastic compliance tensor of which inverse to related to the elastic
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Figure 3.1: Schematics of 3 Dimensional Stresses in Cartesian coordinate

modulus or stiffness tensor, and AT is change in temperature on the material. Note
that S;jx is a fourth order tensor and carries 81 possible components. Nevertheless it
can be reduced down to 21 through the symmetry relation Sijx = Skiij = Sjirt = Sijik
. This symmetric property of compliance tensors allow us to formulate the stress to

strain relation in a more compact matrix form [52][53|.

Nxa S Sz Sz S S5 Sie Ozx 11

Myy So1 Sz Saz Sas Sas Sag Oyy 022

N2z Sg1 Sso Ssz Ssa Sss Ssg Ozz Q33
= + AT

My Sy Saz Saz Sas Sis Sas Oyz Q23

Nz Ss1 Ss2 Sz Ssa Sss Sse Ozx 13

Ny Se1 Se2 Ses Sea Ses5 Ses Oy 012

Where S““ = SiiandSiijj = S’Lj
Where zo = 1,yy = 2,22 = 3,yz = 4, zx = 5, andxy = 6.
Later the computation becomes much simpler than the above because we assume

uniaxial pressure wave and disregard presence of shear. In that case calculation is
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possible with only Si1, 512 and Sy. It should be noted that linear part of these

elastic equation does not account for dispersions.

3.1.2 Simulation of Laser Induced Strain Generation and Propagation

The most widely used model for strain generation and propagation in semiconduc-
tors is a thermoelastic model that was proposed by Thomsen et al. [6] approximately
twenty years ago. The model assumes that the energy transfer from the photoex-
cited electrons to the lattice occurs through instantaneous thermal expansion while
neglecting most of the carrier relxation processes described in chapter 1. Optical
radiation absorbed within the penetration depth increases the surface temperature
thus exerting stress that causes a localized deformation. If the illuminated area is
sufficiently large compared to the extent of the initial stress distribution along the
surface normal, the stress near the center of the beam spot can be regarded uniax-
ial. In this approximation, the stress causes a displacement parallel to the surface
and strain propagates throughout the crystal in form of a longitudinal acoustic wave
which consists of broad spectrum of phonon modes (See Figure 3.2 ). Details of the
model and associated assumptions are discussed in following paragraphs.

When you apply intense light with sufficiently short pulse duration (~ sub-
picoseconds) with photon energies close to or above the band gap of the semiconduc-
tor, you can generate a dense photoexcited electron and hole plasma near the surface.
The process of excitation of the plasma is maintained throughout the duration of the
light pulse and they remain in the conduction and valence band typically for tens of

nanoseconds to a few microseconds. This excitation changes the equilibrium lattice
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Figure 3.2: Calculated spatial dependence of the strain based on Thomsen’s thermo-
elastic model at different times following optical absorption [6].

spacing and introduces an electronic stress because the valence band electrons in gen-
eral contributes to binding the lattice more effectively than the conduction electrons,
and in result it basically changes energy band extrema. Such coupling between the
excited carriers and lattice is governed by the deformation potential that binds the
applied strain to changes in band. Following the initial excitation, the e-h pairs loose
their energy through coupling with the lattice. During this process, the hot carriers
impart most of their kinetic energy into the phonon bath system. Non-equilibrium
incoherent phonons can be generated through this mechanism [54, 55].

In our numerical scheme, we consider a short laser pulse that deposits most of
its energy into an isotropic substrate and generates a near instantaneous stress. We
assume that the absorption depth p is much smaller than the material thickness d ,
which is true for most of the experiment covered in my work. Also we assume that

the linear dimension of the area A illuminated by the optical pulse with energy @
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is sufficiently larger than the absorption depth. The total energy deposited per unit
volume at a distance z into the material can be written as

Wi(z)=(1- R)A%e_i, where R is the surface reflectivity.
The corresponding heating of the medium gives a temperature rise that is

AT(z) = %ﬂz) where C,, is the specific heat per unit volume.
Assuming that resulting strain is going to be uniaxial and thus the stress only exerts
on z-axis, only nonzero element in the strain tensor is 7,,.

Hence we have

0., = pv*n.. — 3BaAT

where B is the bulk modulus, p is material density and v is the longitudinal speed

3B(1— . . .
of sound. Note that pv? = (1(+V)”) , where v is known as Poisson ratio.
i 2 2 . .
We also have the wave equation paaz’gz = 38%, which can be re-written as
82 82 zz ] __ Ouz,
P gBs = S5%* since 1), = 5=,

As a result, the wave-equation with differential expansion term as a driving force:

0°n.. 2 0?1, _ 14+v C¥62AT
ot? 022 1—v 022

If we assume that the strain is initially zero, that is n(z,¢ < 0) = 0 and that the

stress at the surface is always zero, we have a solution that shows

— VvV

1
(0, > 0) = (1+”> aAT(0,t > 0)

These boundary conditions ensure that there will be two acoustic waves that propa-

gates in opposite directions in addition to a stationary strain. Thus the strain
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B 14 z —vt
Ns2(2,t) = (1 — R)% (e_u(l - %eu) — %e"z_“ﬂ/“sgn(z — vt))

3.1.3 Effect of Plasma Diffusion and Recombinaton

When carrier diffusion process is faster than the associated attenuation, which
is true for many semiconductor materials, the simple thermoelastic model, which is
described in the previous section, becomes inadequate to describe the laser induced
strain|3, 56, 4|. In this case, it is important to include contributions from generation,
decay and heating of the plasma. First we make an assumption that e-h pairs are
created instantly upon incident of the laser beam and that energy transfer from the
plasma to the lattice occurs with a time constant less than 1 ps. In this case initi